
	Vectors					
YEAR	PAPER	QUESTION				
2014	1	Find the resultant vector $2u - v$ when $u = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ -4 \\ 7 \end{pmatrix}$.				
		Express your answer in component form.	2			
2014	2	The diagram shows a cube placed on top of a cuboid, relative to the coordinate axes.				
		A is the point (8,4,6). Write down the coordinates of B and C.	2			
		write down the coordinates of B and C.	Z			
2015	2	Find $ \mathbf{u} $, the magnitude of vector $\mathbf{u} = \begin{pmatrix} 6 \\ -13 \\ 18 \end{pmatrix}$.	2			

2016	2		
2010		The diagram below shows parallelogram ABCD.	
		D C V V V A U B	
		\overrightarrow{AB} represents vector \mathbf{u} and \overrightarrow{BC} represents vector \mathbf{v} .	
		Express $\stackrel{\longrightarrow}{BD}$ in terms of \mathbf{u} and \mathbf{v} .	1
2017	1	The diagram shows a square-based pyramid placed on top of a cube, relative to the coordinate axes.	
		The height of the pyramid is half of the height of the cube. A is the point (6,0,0). The point C is directly above the centre of the base.	
		Write down the coordinates of B and C.	2
2017	2	Find $ \mathbf{v} $, the magnitude of vector $\mathbf{v} = \begin{pmatrix} 18 \\ -14 \\ 3 \end{pmatrix}$.	2

2017	2	In the diagram below, RQ and PQ represent the vectors c and d respectively.	
		d	
		$P \xrightarrow{\alpha} Q$	
		\c\c	
		\sim R	
		(a) Express \overrightarrow{PR} in terms of c and d .	1
		The line QP is extended to T.	
		$T \xrightarrow{P} \stackrel{\mathbf{d}}{\longrightarrow} Q$	
		V	
		R TR-PO	
		TP = PQV is the midpoint of PR	
		V is the imapoint of the	
		(b) Express \overrightarrow{TV} in terms of \mathbf{c} and \mathbf{d} .	
		Give your answer in simplest form.	2
2018	1		
		$\begin{pmatrix} 1 \end{pmatrix} \qquad \begin{pmatrix} 6 \end{pmatrix}$	
		Two vectors are given by $\mathbf{u} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ and $\mathbf{u} + \mathbf{v} = \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix}$.	
		Find vector v.	
		Express your answer in component form.	2
2018	2		
2010			
		Find $ \mathbf{r} $ the magnitude of vector $\mathbf{r} = \begin{bmatrix} 24 \\ 12 \end{bmatrix}$	2
		Find $ \mathbf{r} $, the magnitude of vector $\mathbf{r} = \begin{pmatrix} 24 \\ -12 \\ 8 \end{pmatrix}$.	4

2019	1		
		In triangle PQR, $\overrightarrow{PR} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$ and $\overrightarrow{RQ} = \begin{pmatrix} -1 \\ 8 \end{pmatrix}$.	
		P R	
		(a) Express PQ in component form.	1
		M is the midpoint of PR.	
		(b) Express MQ in component form.	2
2019	2	The diagram shows a cone with diameter 6 units and height 8 units.	
		D A X	
		 The x-axis and the y-axis are tangents to the base A is the point of contact between the base and the x-axis 	
		B is directly above the centre of the base	
		Write down the coordinates of A and B.	2